= sinA sinB = LS
= 1/2 * (2 * sinA sinB)
1/2[cos(A-B)-cos(A B)]
=1/2[(cosAcosB sinAsinB)-(cosAcosB-sinAsinB)]
=1/2[2sinAsinB]
=sinAsinB
cos(A-B)=cos(A)*cos(B) sin(A)*sin(B)
cos(A B)=cos(A)*cos(B)-sin(A)*sin(B)
cos(A-B)-cos(A B)= cos(A)*cos(B) sin(A)*sin(B)-
(cos(A)*cos(B)-sin(A)*sin(B))=
2*sin(A)*sin(B)
So sin(A)*sin(B)=0.5(cos(A-B)-cos(A B))
= sinA sinB = LS
1/2[cos(A-B)-cos(A B)]
=1/2[(cosAcosB sinAsinB)-(cosAcosB-sinAsinB)]
=1/2[2sinAsinB]
=sinAsinB
1/2[cos(A-B)-cos(A B)]
=1/2[(cosAcosB sinAsinB)-(cosAcosB-sinAsinB)]
=1/2[2sinAsinB]
=sinAsinB
cos(A-B)=cos(A)*cos(B) sin(A)*sin(B)
cos(A B)=cos(A)*cos(B)-sin(A)*sin(B)
cos(A-B)-cos(A B)= cos(A)*cos(B) sin(A)*sin(B)-
(cos(A)*cos(B)-sin(A)*sin(B))=
2*sin(A)*sin(B)
So sin(A)*sin(B)=0.5(cos(A-B)-cos(A B))
This post is last updated on hrtanswers.com at Date : 1st of September – 2022